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ABSTRACT: Fourier spectra were computed on the IBM 7090 for analog tape
recorded pressure pulses of underwater explosions fired at sea in February
1965. Depth: ranged from 500 to 1,000 feet; charges weighed 1 to 88
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results from 1 and 10 pound charges at the same depths. Only slight
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NOLTR 66-1:

SPECTRUM AND OCTAVE BAND ANALYSIS OF
PRESSURE PULSES FROM DEEP UNDERWATER EXPLOSIORS

1. INTRODUCTION

Weston (re“erence a)* derived an analytical approximation of a
frequency spectrum analysis which is applicable to the pressure pulse
near a relatively shallow underwater explosion. 1In order to determine
the effect of depth upon the spectrum, Christian and Blaik (reference b)
performed a spectrum analysis in 1964 on data obtained earlier by several
different investigators. The data they used, which was all recorded near
the surface, was from l- to 10-1b charges fired at depths between TOOO
feet and 22,000 feet.

To extend the range of depths to shallower conditions, end to
include larger charges, a series of shots was fired at sea in 1955. The
experimental conditions for these shots are given in Table 1; for compari-
son, the conditions for the earlier experiments are also shown. This
paper reports the resuits of the frequency spectral analyses perforued
on the 1965 shots.

2. EXPERIMENTAL CONDITIONS

The experiments were carried out in February 1965 ebout 200 miles
east of Eleuthera, in water about 18,007 feet deep. The gage for recording
the pressure pulses was suspended from the USNS GILLIS at a depth of about
200 feet. The charges were fired at depths ranging from approximately
500 to 14,000 feet directly beneath the ship.

One Atlantic Research Corp. Type LC-32 hydrophione was used to pick
up the pressure pulses. The same gage cutput was recorded on two oscil-
loscope channels, using difierent gains and sweep speeds. Almost immediate
observation of pressure-time data was obtained from Polaroid prints. M
magnetic tape recordings were also obtained from the same gage at 60 inches
per second on the FR-600 tape recorder. The frequency response of the
M recorder was essentially flat from 0=-20 kecs; the hydrophone, however,
gave scie low frequency distortion (reference c).

Most of the charges fired were TNT and HBX-3; 1l-1lb, 8-1t, and 55-1b
ciarges vwere used. In addition, some 1-1b pentolite and 88-1b Nitramex*#*
charges were used. Attemrts to fire 1000-1b TNT charges failed {reference
d). All charges were bcostered with pentolite which in turn was initiated
with hydrostatic firing devices which ver: set for nominal depths of 500,
300, 1200, 3000, 4500, 7000, 10,000, and 14,000 feet.

* References are listed on rage 8.
## Manufactured by E. I. Dupont de Nemours & Co. The composition is

164 TNT/4% DNT/3CH N&N03/35% NHhN03 plus iron and phosphorus.

1
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The shot data are given in Table 2.

3. DATA ANALYSIS

3.1 Method of Deta FPeduction. The analog tape data was 4 ii.zed by the
Mathemati~s Departmen. of the David Taylor Model Basin on their Compu*. r
Data Format Translator (CDFT), which has a capability of -~~npling 2000
times per second. ‘The analog tapes were played back on ti.c DIMB Ampex
FR-600 at 3-3/4 inches per second and sampled and digitized 1875 times
pe- second on the CIFT. Since the data was recorded at 60 inches per
second, this is equivalent to sampling at 33 wmicrosecord intervals in
real time. The sampling should have been performed at 25 microsecond
intervals in order to observe the Nyquist criterion of sampling 20 ke cita.
Hovever, sampling at the next lower playback speed of 1-7/8 inches per
second resulted in too much noise and so was not done.

A fiducial marker one millisecond ahead of the pressure pulse on
the analog tape initiated digitizing by the Compter Data Format Translator.
The l1-millisecond baseline was digitized so that the average value of the
baseline could be obtained. Th¢ sampling rate was sufficient to average
out the dominant high frequency noise; however, the baseline was too short
to average out the inherent 60 cycle noise.

The number of times a pulse was sampled ranged from about 590 samples
for the deep shots to 5000 samples for the shallow shots. The digitized
tapes were the input to the I8M 7090 computer program, NEWGRL, described
in reference (e).

3.2 Types of Analysis Performed. Three types of computation were carried
out on the IMM 7090 ccmputer. These were:

(1) The energy spectral density E(f)* of the positive phase of the
shock wave only was computed as described in reference (e). The energy
spectral density was computed in increments of 50 cps from 50 cps to
16 kcs, and the points were connected by straight lines by the CAL COMP
565 plotter.

(2) The spectrum wvas similarly computed For the pressure pulse
through several pressure oscillations until the pressure returned to the
noise level. The frequency interval at which the spectrum was computed
vas smaller than 50 cps to better define the spectrum for shallow shots
swhich have long bubble periods. In all cases, the integration was carried
out to the end of the positive phase of the last bubble pulse observed
on the tape rzcords. The number of bubbles integrated is given for each
shot in “'wole 2.

* E(f) = 2-|A(£)|° where A(f) is the amplitude spectrum described in

referenf€ (e) and pc = 1.506 x 10°.

T T - w ——
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{3) The energy in octave bands from low frequencies up through the
8-16 kes band was also computed on the IEM 7090 for both cases--the chock
wave alone and with several pulses. The lower octave band energies were
lacluded since it was of interest to determine the rate at which the
energy decreased with decrzasing frequency for frequencies less than the
bubble period frequency.

2.3 Accuracy of DIMB Computer [ata Format Translator. Since the CTOFT
had not teen used previously for analyses of explosion pulses, several
checks were run. In one instance, the same record was digitized twice
on different days.

The agreement between pairs of frequency spectra was found to be
quite good at low and mid=frequencies, except that even slight shifts in
the baseline affected the lowest frequencies noticeably. At the highest
frequenc. -z, differences were found in the slopes of the spectral den-ity
curves; these were attributed to the sampling rate which was not fast
enough in this region.

This matter is discussed in more deteil in Appendix A.

.n additicm; an analysis of the cscilloscope data for a few shots
vas made in order to obtain an overall check of the spectrum results digi-
tizeC by the CDFT. Data reduction of the oscilloscope records was done
as outlined in section 4 of reference (e). The two methods gave good
agreenent .

4. ENERGY SPECTRUM OF THE TOTAL PU'SE

4.1 Fffect of Number of Bubbles Integrated. Figure 1 shows two spectra
computed from the same digital tape. 1In one case the computation was
stopped at the end of the positive phase of the first bubble pulse, and
in the other the computation was stopped after the third bubble pulse.

There aprear to be two effects attributable to the difference in
integratior time. First, the maximum energy shifts to higher frequencies
for the integration through the larger number of bubble pulses. Second,
the spectrum computed through one bubble pulse is smocther than that
through three, where the second and third oscillations are somewhat dis-
torted. Both effects are due to the fact that the bubble pulse amplitudes
and periods decrease with successive pulses.

L.2 Effect of Charge Weight. To examine the effect of charge weight on
the spectrum, a comparison is made in Figure 2 arong the spectra ¢f three
TRT charges fired at nearly 4400 feet and weighing 1, 8, end 57 pounds.
The 1- and 57T-pound shots were integrated through th:ree buhbles and the
8=1b shot was integrated through two bubbles.

L
In Figure 2 the energy lavel has been reduced by the factor (weight /3)
after Weston (reference a), and the frequency has been reduced by multiplying
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by (weightl/j). It is observed that these reduction factors result in
good agreement among spectra of varying charge weight ranging from 1 to
57 pounds where the charge composition and burst depth are tbe same.

L.3 Erffect of Renge-Depth. Since the shots were recorded near the sur-
face, the effects of burst depth and propagation distance upon the spectra
are difficult to separate (reference b). The effect of depth-range upon
the spectrum is illustrated in Figure 3 in vhich a plot of the spectra

of three 1l-1b HBX-3 charges vhere the vertical charga-to-gege range, R v’
is equal to 1154 feet, 4335 fect, and 7637 feet respectively.

In Figure 3 the energy level has been reduced by R-', a smerical
sp-eading factor. The spectra are affected by depth, as expected. The
lov frequency differences are caused by the effect of depth on t?g bubble
pe.10d; the maximum energy is at a frequency proportional to Z, , where
Zo is the hydrostatic depth. Thc apparent attenuation of higher frequencies
vith range may or may not be real; resolution of this question requires
further analysis of these data.

L.k Effect of Charge Composition. 1In Figure 4 three one-1lb charges of
different compositions fired at a vertical range of about 1150 feet are
compare.. The relatively flat slove of -4.5 dB for HBX-3 in the 7-16 kecs
band is probably an artifact caused by the sampling rate discussed
previously (Section 3.3 and Appendix A). The slopes of the other two
spectra are -9 dB ani -10 4B per octave for TNT ard pentolite, respectively.
The TNT and pentolite spectra appear to agree rather well. In contrast

the HBX-3 spectrum has two differences:

(1) The maximum peak #nd corresponding peaks have shifted to lower
frer tencies because of the longer first bubble period.

(2) The emplitude of oscillation of the spectrum for HBX-3 is not
so great as for TNT or pentolite. This is attributed to bubble pulse
pressures damping out at a faster rate than those of TNT and pentolite.

The slopes of the three spectra are similar at frequencies below
the bubble period frequency.

Figure 5 shows the maximum energy spectrsl density reduced by wh/f
plotted versus vertical range for all the 1965 data. The scatter in the
data is sucn .hat no statistically significant conclusions can be drawn.
However, the HEX-3 points would average perhaps 2 dB higher than the TNT
points. The TNI points average about 2 dB lower than those repurted by
Christian and Blaik (reference b) for TNT and pentolite combined. Finally,
the Yitramex data appear to be the lowvest.

5. OCTAVE BAND ANALYSIS

Using Simpson's Rule, the energy in ten octave bands starting with
the 15-30 cps band and including the 8-16 kecs band was cowmputed on the

I
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IBM 7090 computer for all the 1965 shots. This analysis was performed
for the positive phase of the shock wave (except for the lowest bands )
and also for the rulse including several bubbles, and is presented in
Tables : urd 4, respectively.

7.1 Octave Band Energy for the Shock Wave. Figure 6 is a plot of octave
band energy of the positive phase of the shock wave for four HBX-3 charges,
weighing from 1 to 50 pounds and fired at a vertical range of about 4200
feet. The exper&7gntal energy level was reduced by multiplying by the
weight factor, W /7, and multiplied by the spherical spreading term
relative to 100 yards )[R(yds)/lOQ]‘. Also, the frequency was multiplied
by the factor (weighti:5). This results in the encrgy spectrum level for
a l-1b charge at 100 yards range.

The next four plots {Figures T-10) present the shock wave octave
band energy of all the 1965 data, for TNT, HBX-3, pentolite, and Nitramex,
respectively. The octave band energies and the frequency were reduced
by the same factors as in Figurs 6, and each curve was obtained by drawing
by eye an average line through the data for each of the nominal ranges.

In general, the scatter about each of the curves drawn is about the same
as that shown in Figure 6. Hcaiever, for certain depths* the relatively
few data points and the scatter of the dsta in the £-16 kcs band reswlted
in curv~s vwhich are not reliable irn the high frequency regiun.

At the very low frequency end of the spectrum, the energy level
approaches the shock wave impulse. In this region, the energy decreases
with increasing depth and this is characteristic of all data. This is
expected since the shock wave impulse decreases faster than range'l
(reference f) for all compositions. The spread in the reduced spectra
decreases with_increasing frequency until a minimum is obtained at about
2000 cps x 1bs1/3. As the frequency increases further, the spreed in
energies increases again; the energy in gene-al decreases with increasing
depth as occurred at the low frequencies.

The change in the shock wave spectra at the low frequency end as
the depth is varied 1s a consequence of the change in the waveform with
deptn. As the depth increases, the shock wave duration decreases, resulting
in a shorter pulse which will produce loss energy in the lower frequencies.

The HBX-° spectra show 1 t0 3 4B higher energy than TNT at the lowest
frequencies for all ranges. Since the spectrum approaches the izpulse
at zero frequency, this higher energy level for HBX-3 is ceaused by higher
shock wave impulse (reierence f). In general, tne TNT and HBx-3 data are
in good sgreement at all but the lowest frequencies. Pentoliie is 1 dB
to 3 dB higher than TNT for all frequencies at the three ranges for vwhich
data exist. Nitramex is 2 dB or 3 dB lower than TNT at most frequencies
for corresponding depths. Nitramex has a slope of -6 dB per octave in
the high frequencies; this is a relatively high slope.

* TNT date at nominal depths of 120C % and 4500 ft; HBRi-3 data at
nominal depths of 1200, 2000, 4500, and 10,000 ft; Nitramex data at
the nominal depth cf 3000 ft.
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There are two slight anomalies in the HBX-3 data: the 2000 ft data
are consistently 1 or 2 Jb higher than the 1200 ft deta, and the energies
for the one 2000 ft depth shot fired are higher than the 1200 ft depth
energies. Again these comparisons are based on statistically inadequate
data.

5.2 Octave Band Encrgy for the Total Pulse. The next four plots (Figures
11-14) show the octave band energy —ur the total pulse (shock wave plus
one or more bubbie pulses as indicated in Table 2) £7r the four comnosi-
tions. Again Lae energy level is reduced by weight 3 and multiplied by
the spherical spreading factor; the fresquency is reduced by weightl 3 as
in Figures 7-10. The octave band energy density points were cconnected

by straight lines and the maximum value is an extrapolation of these
curves at the bubble period frequency.

It is observed in the four sets of data that there is no systematic
change in the slope of the line for freauencies less than the bubble
period frequency. An accurate determination of the slopes for these
frecuencies could not be made since in general there were only two octave
bands below the butble period fresucicy. Furthermore, the difficulty
in determining the value of the baseline (discussed in Section 3.1) may
have resulted in large variatio~s of energy for the lowest bands. However,
the curve in this regior usually has a steeper slope (8 dB or 9 dB per
octave) than the slupe of 3 dB or 4 dB per octave reported by Christian
and Bluik (reference b), and is believed to be more realistic, since it
is based on consicderably more data and a more closely spaced frequency

analys.is.

In comparing the data for different charge compositions at the same
ranges, it was observed that TNT and HBX-: h7we coaparable energy levels
for reduced frequencies greater than 1 ke-wl/ 3. However in the low fre-
quency region, the maximum energy for HBX~3 is greater than that for TNT
and occurs a: lower frequencies. Pentolite has a 2 dB to U dB higher
energy level than TNT for moct frequencies. It must be noted that there
is only one pentolite shot and only one weight--1 pound--at each of the
three ranges. Nitramex was observed to have a 2 dB to 4 dB lower energy
level than TNT foir all frequencies; this, too i. based on scanty data.

6. CONCLUSIONS
(1) The zood agreement previously found between *he reduced total
pulse energy .pectra of l- and 10-pound charges has been shown to hold
up to 57=-pm .d charges.
(2) The total pulse energy spectra cf charges fired at various
vertical rcnges between 500 and 14,000 feet vary with depth ac expected
from previous sork.

{3) The total pulse energy spectra of TNT and pentolite are almcst
identicel; the HBX-3 spectrum shows a maximum (and succeeding peaks) at a

6
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lover ‘requency, less oscillation, and smaller attenuation at the highest
frequencies. The energy of the maximum wes not statisvically different

for the four compositions fired; however, HBX-3 gave the highest values
and Nitramex the lowest.

(1) The octave=band energy for the shock wave alone ead for the
total pulse show the effect of depth in sharpening the shock waveform and
de~reasing the bubble period. The low frequency drop off of 8«3 dB per

octave for the total pulse ~nergy is believed to be a better value than
the previous one.
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TABLE 1

COMPARISON OF PREVIOUS AND CURRENT EXPERTMENTAL CONDITIONS

(harge Weight

Charge Depth

Charge Composition
Position of Recording

Gages
Pulse Sampling Method

Length of Pulse
Analyzed

Lovest Octave Band

Christian and Blaik February 1965
(reference b) See, Trials
0.4 to 10 1lbs 1 to 88 1bs
T7000-22,000 ft 500-14,G00 ft

TRT, Pentolite

Verticully above
charge near surface

Pressures sampled at
discrete time intervels
from paper and film
records

To minirum pressure
or end of negative
phase after second
bubble pulse

250500 cps

m 3 PentOlite ] HBX- 3 ]
Ritramex

Vertically ahtove
charge near surface

Pressures from analog
tape data electronically
sample? and digitiz~d
using Computer Deta
Format Translator

To end of positive
phase of last
observable bubnie

pulse

15-30 cps




SHOT STATTSTICS
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TABLE ¢

(harge Charge Nominsl Burst Shot Number of Bubble
Weight Composition Depth Depth Number Pulses Inciuded In
(1p) {r¢) (re) Spectrur Computation
1 TNT 500 517 22 1
500 575 L8 2
500 607 33 1
800 873 L9 2
800 893 67 2
1,200 1,158 L2 3
1,200 1,241 70 2
2,000 1,983 7 3
3,000 2,963 ks 3
3,000 3,032% 10 3
4,500 L,411 b 3
L,500 L,502% 52 3
7,000 T,402% T 3
1 PENTOLITE 500 552 64 3
1,200 1,377 63 2
7,000 £,621% 5 3
1 HBX-3 1,200 1,331 L6 3
2,000 1,891 65 L
4,500 L, 208% 51 3
4,500 4,517 56 3
10,000 9,824 T3 L
8 TRT 500 430 26 1
500 571 31 1
800 892 12 1
1,200 1,139 72 3
1,200 1,237 43 2
1,200 1,250 6 2
2,000 L87TL 21 3
2,000 2,031 35 3
2,000 2,051% L 2
3,000 2,92 L7 3
4,500 L,305 32 3
4,500 L,372 25 2
4,500 L,s5k2 55 3
1L,000 13, 300% 18 3
14,000 13,400 36 3
8 HBX-3 1,200 1,182 Ly 3
1,200 1,358 11 2
4,500 4,202 50 2
10,000 9,849 T1 3
14,000 13,540 15 3

# Depth determined from bubble period.

TR LY - -

10
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TABLE 2
SHOT STATICTICS (cont'd)

Charge Charge Nominal Burst Shot Number of Bubble
Weight Composition Depth Depth Number Pulses Included In
v ) (re ) ~(ft) Spectrum Computation
57 TRT 2,000 1,844 8 2
2,000 1,923 3 2
4,500 4,282 37 2
4,500 b 413 20 3
7,000 6,608* 3 3
T,00G 7,147 79 3
14,000 14,340 62 3
50 HR3X-3 2,000 1,813 63 2
2,000 2,891 78 3
4,500 4,443 53 2
7,000 7,498 57 3
10,000 9,547 59 2
88 RITRAMEX 3,000 2,793 38 2
3,000 2,900 19 1
7,000 7,051 29 3
10,000 10,308 Lo 3

11
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APPENDIX A

REFRODUCIBILITY OF SPECTRA FROM DIGITIVED DATA

In order to test the DIMB Computer Data Format Translator with our
analog tapes, repeat runs of digitization were made and the results com-
pared. This was done for a record which was analyzed only for the positive
shock wave pulse, and for another record analyzed through the first bubble
pulse.

¥igure A-1 illustrates typical energy spectra of the positive phase
of the shock wave. The two plots shown are or the same shot, No. u46, a
1-1b 1I8X=3 charge fired at 1330 feet, the difference being that the analog
data wes digitized on diffcrent days. This was dene to check the repro-
ducibility of the JIMBR equipment. The spectrum becomes level at the lower
frequencies and approaches the impulse* at zero frequency. The reproduci-
bility of the shock wave spectra at low and mid frequencies is observed
to be quite good.

The spectrum of an exponential pulse should ideally have a -6 dB
per octave slope in the high frequencies {(reference g). However, in
Figure A-1 the slores of the cpectra are -5 dB per octave and -11 4B per
octave., respectively. Although the sampling was at 33 usec intervals in
bcth cases, the sampling was probably initiated at different times,
resulting in digitizing different porticns of the pressure-time data.

In this particular case, where thr u~ «~ti€s are the order of 50 usec,
R¥* about 150 ysec, and the sampiing intcrval 33.3% usec, reading differ-
ent pressures on the rise and near the peak could result in different
slopes in the spectrum at the highest frequencies. This was verified

by read_ng the same pressure-time Visicorder record on the Telereadex in
such-a way that the sampling was controlled by starting the sampling at
different times relative to the discontinuous rise of the shock wave. It
becomes apparent that the sampling should have been at closer intervals;
however, the availabl: 16.6 usec sampling rate was not used because it
introduced too rmuch 10ise, as mentioned before.

Figure A-2 shows e.mumples of energy spectra of a pulse integrated
to the end of the positive phase of the first bubble pulse. Here sgain
the same analog data was digitized twice. Ac expected for oscillating
functions, the maximum energy occurs at the oscillating frequency; l.e.,
at the bubble period frequency (35 cps) and then continues to oscillate
at intezral multiples of this frequency. At 500 cps, the interval in
vhich the spectrum was compu%ed was changed from 5 to 50 cps; therefore,

* Impulse is defined as J p(t)dt, where T is the duration of the
pressure pulse, p(t), being integrated.

** o, the time constant of the pressure pulse, is defined as the time
vherc the pressure falls to l/e of its maximm velue, P,

A-1
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the 35 cps oscillations are not vell defined for frequencies greater than
500 cps. It is apparent that the spectra are in goud agreement from the
bubble fundamental frequency to about 6-8 kcs. In the high frequencies,
the slight differences in slope are again attributed to the relatively
coarse sampling rete and the uncontrolled starting point of the ssmpling.

Although the characteristics of the two curves from abaut 20 cycles
t0o about 5 cycles are similar, the discrepancies are 3 to 5 dB. This
large discrepancy is probably due to the different baselines calculsied,

since a slight shift in the baseline could produce relatively large
differences in the impulse.

A=2
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